Pyash: One Language to Unite Them All

*

Andrii (Logan) Zvorygin
LiberIT Liberty Information Technology Services
Owen Sound, Ontario N4K 4R1
logan@liberit.ca

Abstract

By using the fundamentals of human language, we may be
able to achieve complete vertical integration for software
languages, allowing one language to do everything from low
level programming to chatting with humans.

Most software languages can’t be used for making con-
tent, documentation or having a discussion. Because the
vocabulary and grammar of most software languages is so
limited, it is impossible to gain conversational fluency, thus
they never rise to the status of human language, but sit as
merely a code.

After years of research, analysis, data-mining and proto-
types, a language has been made that not only allows for
human-computer discourse and programming, but surpris-
ingly can also be usable as a highly formal pivot language
between the majority of human languages. As of this writing,
beta-testing seems to be just a short time away.

In conclusion, a single language to unite all languages
is viable at least to the degree that it has already been im-
plemented. It can translate between controlled variants of
most, possibly all human languages. Though further work
is needed to prove that those controlled variants can be eas-
ily learned by natural language speakers. It can’t translate
between different software languages, but may be able to
vertically integrate all the purposes of software and human
languages into one language. Further work is needed in
order to prove that to a higher degree of certainty.

CCS Concepts +Software and its engineering —General
programming languages; -Human-centered computing
— Natural language interfaces;

Keywords grammar, programming language, pivot language

“A vertically integrated software language based on the common features
of the majority of human languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

SLE2017, Vancouver, British Columbia, Canada

© 2017 ACM. 978-x-xxxx-xxxX-X/YY/MM...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Reference format:

Andrii (Logan) Zvorygin. 2017. Pyash: One Language to Unite
Them All. In Proceedings of SLE Vancouver, Vancouver, British
Columbia, Canada, October 2017 (SLE2017), 7 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction

The purpose of software languages is to help humans com-
municate with machines. To achieve this, the language has
to be regular and sufficiently well defined that both parties
understand what the other is saying. Though contemporar-
ily the computer is programmed in one language, and error
messages have a different protocol (mini-language).

Homo-sapien language has been evolving since at least
Mitochondrial Eve, she lived possibly one or two hundred
thousand years ago. There are already over 6,000 human
languages, so it is acceptable to add another one, which
happens to also be a general purpose software language.

The goal of the software language, is complete vertical
integration. So that if one is to reincarnate into a robot, then
everything from the lowest to highest levels can be accom-
plished using the same language. Similar to how English
can be used to communicate everything from the lowest to
highest levels.

Several versions of implementing this idea have been made
over the last decade. This paper uses Pyash as the word for
the pivot language (Intermediary Representation), it means
language and is the result of data mining world language
vocabularies (3.2).

Natural English is not formal enough to be directly used
as a software language, however Pyash English is. Pyash
also acts as a bridge, for high precision translation, so Pyash
English documents could be rapidly and precisely translated
to Pyash Hindi, Pyash Spanish, Pyash Swahili, or any other
supported human language.

This high precision translation could open the door to
software languages for the majority of humanity which is
not fluent in English.

2 Literature Review

This section will review some of the common references and
mention how Pyash is different from them.

The main difference is that Pyash is based on the funda-
mentals of human language, and has a complete and orthog-
onal vocabulary.

SLE2017, October 2017, Vancouver, British Columbia, Canada

2.1 COBOL

COBOL, originally intended to be a business programming
language, was designed by several committees, some of the
committee members were unfamiliar with computer pro-
gramming and-or linguistics, the committees also had issues
with discontinuity of personnel. This led to a language that
was neither very good for computer programming, nor very
easy for humans to understand, while also having issues
with repeals due to changing personnel.

By contrast, Pyash’s design takes into consideration many
academic and real world sources for its grammar (3.1), vocab-
ulary (3.2) and instruction set architecture (3.4). It’s evolution
has also run through several different iterations though all
with the same informed personnel to keep it on track.

2.2 Hypertalk

Hypertalk uses English keywords to replace common pro-
gramming syntax symbols, so is largely just a relexification
of standard (ALGOL inspired) programming.

Pyash on the other hand starts with a human grammar
base and then adapts it to usage as a software language.

2.3 Lojban

Lojban is a language intended for human use, but based
on the structure of programming languages, in particular
predicate logic[14]. Because of this Lojban is more of an API
rather than a human language, making it very difficult to
gain fluency[9][20].

While there have been some cursory motions towards
making Lojban a programming language[17], none have got-
ten much past the concept stage.

The net result is that Lojban has not proven suitable for
human communication, nor as a software language. Though
it has been a useful stepping stone and point of inspiration.

3 Method

Many different approaches have been taken to the creation of
software languages. Rather than basing Pyash on the Chom-
sky Hierarchy of formal languages and formal grammars, it
is based it on human grammar.

3.1 Grammar

Linguistic Universals[4] are patterns found systematically
across large groups of languages, possibly all languages. In
particular all languages have verb phrases and noun phrases,
and mark their phrases either with placement, adpositions
or affixes. All can also express tense, mood and aspect.

However there is the issue of making the pivot language.
Which of the many options should the language use? To
the rescue comes the World Atlas of Language Structures([7]
(WALS), which allows one to see what are the most common
features around the world.

Logan Zvorygin

In particular Pyash is Verb-final, or Subject-Object-Verb
word-order, similar to Hindi, Japanese and Amharic. Lin-
guistic Universals point toward suffixes and-or postpositions
for verb-final languages, so they are used.

But what of the grammar words themselves? A variety
of contenders were reviewed, such as Universal Network-
ing Language[8] from the United Nations University, and
FrameNet[10] from Berkley. A more organic solution was
chosen consisting of the list of Glossing Abbreviations[12]
used by linguists when transcribing foreign languages.

3.2 Vocabulary

Contemporary Software Languages generally lack a root
vocabulary. Keywords may have a special meaning, but they
are typically of a syntactic or grammatical nature, so are at
most a grammatical vocabulary. API’s naming convention of
being series of unreserved letters, means that all unreserved
words are proper nouns.

Pyash has a root vocabulary so that documentation, de-
scription and discussion can all happen in the same lan-
guage as computer programming. The encoding requires
API names to be words with a proper morphology (3.3), and
may be restricted to only being official dictionary defined
ones, ensuring standardization and ease of translation.

To generate the vocabulary first several word-lists were
put together, including WordNet core[3], Oxford-3000[13],
UNL-core[8], Special English[5], FrameNet[10], New Aca-
demic Word List (NAWL)[15], New General Service List
(NGSL)[16] and Project Gutenberg Frequency List[2]. After
collating them all and taking out the duplicates, the language
was left with almost 39 thousand words.

Google Cloud Translation API[11] was used to translate
each word on the list individually into the top 48 languages
by number of native speakers. Giving an overall coverage of
greater than 70% of the world population.

A script to sort the vocabulary based on the frequency
list[2] was made and it filtered them for uniqueness. Words
were removed that were:

Overborrowed If more than 38%' languages use the
English term.

Ambigious If it means multiple things in more than
38% of the languages.

Homographs Ifitis a homograph of an already defined
word in any of the languages.

This left the language with a fairly orthogonal pool of
about eight thousand words.

3.3 Morphology

The pivot language needs to be sufficiently easily spoken by
humans for it to be usable by humans in conversation. This
was particularly the case in early prototypes, as it wasn’t

12 — ¢ = 38% where ¢ is golden ratio or 1.618. A golden fraction was felt
to be a natural choice.

SLE2017, October 2017, Vancouver, British Columbia, Canada

ASCII TPA Description English Code ASCII Example IPA Name
a @ central open vowel arm CcvV ka /ka/ short grammar word
b b voiced bilabial plosive ball CSVH kyah /kja" long grammar word
c | unvoiced post-alveolar fricative shout HCVC hkap /"kap/ short root word
d d voiced alveolar dental door CSVC kyap /kjap/ long root word
€ € mid front unrounded vowel enter H /"/ aspiration or spectrographically an unvoiced
f f unvoiced labio dental fricative fire vowel.
g g voiced velar plosive great C a consonant.
h h aspiration happy S a consonant of higher sonority than the preceding
i i unrounded closed front vowel — ski one.
j 3 voiced post-alveolar fricative garage V avowel (highest sonority).
k Kk unvoiced velar plosive keep Table 2. Pyash word morphology.
1 I lateral approximants love
m m bilabial nasal map
n n alveolar nasal nap
o 0 mid back rounded vowel robot Second, a morphology of how the phonemes are put to-
p E) unvoiced bilabial plosive p;n gether to make words was required. For this phonotactics
q N velar nasal En glish of the sonority scale[1] was used, paired with the WALS[7]
. — . chapter on syllable structure.
r r alveolar trill (Scottish) curd . .
. L =" The language was also made easily parsed even if there
s S unvoiced alveolar fricative snake o
. . = are no spaces or pauses between words. Each word is either
t t unvoiced alveolar plosive time .
T two or four letters long. The two letter words start with a
u U rounded closed back vowel blue .
. . . - consonant and end with a vowel, and the four letter ones start
v VvV voiced labio dental fricative voice . .
. . - with two consonants and end with a consonant (Table 2).
W W labio velar approximant water . .
L o The valid words were generated with several alphabets,
X X velar fricative (Scottish) loch . .
: . = and a script was made to assign words based on the phonemes
y] palatal approximant you
. o = in the source languages weighed by their representative na-
z 'Z? voiced alveolar fricative zoom tive speaking populations. The highest frequency words
: glf)ttal stop uh-oh were assigned to the easier to pronounce and understand
6 ® m.1d central vowel uh) smaller alphabets. And the more rare words were assigned to
7 1 high tone Wh'aL the more difficult extended alphabets — with voice contrast
- 1 low toneo no: and-or tones for instance.
1 | dental click tsktsk
8 I lateral click winking click 34 Instruction Set Architecture

Table 1. ASCII alphabet used by Pyash, the letter’s IPA
equivalents, description and English pronunciation key:.

realized that the pivot language could be used for translat-
ing between possibly all human languages — which would
negate the need for actually learning the pivot language, a
Pyash controlled natural language would be sufficient.

First, an alphabet representing phonemes which are popu-
lar in human languages was required, for this PHOIBLE[19]
was used. Then WALS’[7] chapters on phoneme invento-
ries was used to find what a common ratio of consonants
to vowels is, as well as common number of consonants and
vowels, and picked the most popular single phonemes which
are reasonably distinct. Two tones were also included to
increase the number of words. Two clicks were included for
temporary document specific words — in place of acronyms.
An ASCII letter for each IPA phoneme was also selected
(Table 1) to make sure Pyash is web compatible.

For complete vertical integration the language has to boil
down to machine level instruction, or an instruction set
architecture. The JVM bytecode is an example of a different
language which can also be implemented as an instruction
set architecture[22].

Understanding that the future of computing is going to-
wards parallelism much research into how to make the lan-
guage as parallel-friendly as possible was done. In particular
the Heads and Tails ISA[21] was found to be quite inspiring,.

Each Pyash word fits in sixteen bits (a uint16_t). There
are four word types and one quote type which are encoded.
The quote type allows for including literals.

For parallelism sentences are encoded into codelets[6],
which are comprised of one or more vectors of sixteen, six-
teen bit values. The first sixteen bit value of a vector is the
index for the vector, marking the location of grammatical
cases and moods (ends of noun and verb phrases).

This encoding can then be translated to any supported
human language (Table 4). In terms of compiling to a pro-
gramming language, it compiles to OpenCL C. There is also

SLE2017, October 2017, Vancouver, British Columbia, Canada

1. Pyash English do say the quoted’'wordhey
world’word’quoted.

2. Pyash zi.wo.hwacwu.wo.zika hsactu

3. Codelet 0051 291D E928 28BE 245E E948 295E 0000
0000 0000 0000 0000 0000 0000 0000 0000

4. Codelet Explained (0051 index) (291D quoting two
words) (E928 28BE hwac wu) (245E ka accusative-
case) (E948 hsac say) (295E tu deonitic-mood) 0000
0000 0000 0000 0000 0000 0000 0000 0000

5. C

wotyutdokahsac (_(”hwacwu”));

6. Output with en_US locale hey world
Output with ru locale sit mup
Table 3. A codelet encoding example. Note: Controlled
natural language input and output was implemented in the
Javascript version[28], and hasn’t yet been fully ported to C.

Pyash mina ryopyi syutka kwinli
Gloss me NOM robot DAT liberty ACC giving REAL
Pyash English Ibe giving the liberty to robot.

Table 4. Example of formal translation

a design[26] for making a code-parallel virtual machine, that
can process linear code on GPU’s using Pyash ISA.

The encoding could also be used for storage of information,
similar to a database, as well as for knowledge management,
similar to how human languages are used for storing infor-
mation.

3.5 Parser or Encoder

The parser is probably of some interest due to its refined
simplicity. It is a hand coded, single pass type, modeled on
how a human would parse text. There are no parse trees or
any such complexities.

First the parser checks if a word is a valid Pyash word, if so,
then checks if it is a grammatical-case word, a grammatical-
mood word or a quote word, if not then simply adds it to the
codelet.

If it is a quote word then acts accordingly either upon the
literals ahead or the words behind, adding what is neces-
sary to the codelet, and adjusting the codelet and text index
pointer to just after the quote.

If it is a grammatical-case word, then in addition to adding
the word to the codelet, also marks it on the index.

If it is a grammatical-mood word then does as with the
grammatical-case word but also ends the codelet. With the
exception of the conditional mood, which is treated the same
as a grammatical-case for encoding.

Logan Zvorygin

For reading and writing to the codelet there is a function,
which manages which vector is being added to. If the addi-
tion over-runs one vector, then it’s index is inverted, and the
next vector receives the additions. This way when reading
indexes, it is known if it is the end of the codelet based on
the first bit of the index — if it is a one then it is the final
vector.

This simple parser/encoder could parse/encode sentences
in parallel, and should be adaptable for parsing spoken streams
of phonemes. A more complicated version of the parser/en-
coder will be necessary once support is added for subordinate
clauses, since they would have to be broken up into multiple
codelets for the encoding.

4 Discussion

Various variations of the language have been worked on
since 2007. The first implementation[23] was in Haskell and
second was in Java[24], both were recursive parsers.

The third implementation[25] followed the Jones Forth[18]
model, hoping to bootstrap something small and scaleable,
so Intel assembly was used for a few years and succeeded in
making a basic interpreter.

The fourth attempt[28] was in nodejs Javascript, since by
that time it was realized that the language could be used for
translation, and something portable was desired which could
written quickly — the antithesis of assembly. A translator
was made and a basic compiler to Javascript, but was severe-
ly limited by a hand picked vocabulary, so an automated
vocabulary (3.2) was made. While it was being made, it was
realized that the object oriented implementation in Javascript
was difficult or impossible to make parallel, combined with
its plain text encoding led to it running extremely slow. So
the Javascript translator and compiler was abandoned, but
the automated vocabulary was kept.

The fifth and current attempt[27] it was motivated by the
realization that something fast, scaleable and future-friendly
was needed, so a parallelizeable ISA (3.4) was designed and
the implementation was done in OpenCL C. As of this writing
(May 2017) it compiles hello world, does variable assignment,
for loops, and function declarations are being implemented.

4.1 Vertical Integration

While the main focus of the current implementations has
been computer programming languages and related docu-
mentation. The language can be used to cover the areas of
other software language types as well.

4.1.1 Database Languages

For example SQL database access and creation language, can
easily fit as a subset of Pyash, with some slight vocabulary
changes (Table 5). Due to this rather fortunate grammatical-
case design of SQL it should be possible to translate from

SQL Pyash Pyash English

CREATE tlip establish
SELECT kcot gather
UPDATE draf modernize
DELETE dlas delete
INSERT hquk inject

FROM pwih from

WHERE te at

INTO twih into
Table 5. Sampling of SQL keywords and their Pyash equiv-
alents

SQL to Pyash and vice-versa — whereas with most place-
ment based parameter family of languages it is a non-trivial
process.

4.1.2 Ontology Languages

For knowledge representation or ontology languages, the
databases could simply be made of Pyash codelets. They
could be rapidly queried in parallel on GPU for any partic-
ular piece of information. They could be translated to and
from human language, for sharing gathered knowledge with
humans, or acquiring knowledge from humans.

Even a few people having a conversation, such as at a
meeting could generate programs and-or machine knowl-
edge if they were speaking with enough formality to be
Pyash accessible.

Pyash accessibility is currently rather low, having a rather
strict grammar. But with machine learning algorithms to
help with converting natural language speech into Pyash
controlled natural languages the amount of machine acces-
sible knowledge that could be harvest from the spoken and
written word should dramatically increase.

4.1.3 Modeling Languages

Considering that Gellish is a modeling language, and that
Pyash has a much more developed grammar, it should be
fairly straightforward to adapt Pyash to be a universal mod-
eling language.

For visual people, graphics could be generated from Pyash
descriptions. So in the hypothetical scenario of some people
talking in a meeting, the computer could be projecting the
model of what is described on the screen. Or running and
showing simulations to see the potential outcomes of various
policy or program changes.

4.1.4 Domain Specific Programming Languages

The majority of domain specific languages seem to have
placement based parameters. This means that reading the
APl s likely necessary to understanding how to use any func-
tions. Thus, unless the API is written in Pyash or some other

SLE2017, October 2017, Vancouver, British Columbia, Canada

machine-accessible format, translating to and particularly
from those languages to Pyash is non-trivial.

Translating to those languages is easier, as a human can
read the API and make an appropriate Pyash side function
to access it. However if someone adds a new function to that
other language, without following something like the Pyash
function naming convention, then it will be nearly impossi-
bly to translate to Pyash without reading it’s corresponding
API and-or analyzing it’s code.

Possibly when machine learning and AI gets sufficiently
sophisticated it will be able to do those translations, but that
is quite possibly decades away.

For now it makes sense to limit official Pyash program-
ming development to compiling to popular C libraries, and
also making native libraries.

4.1.5 Communications Protocols and Serialization
formats

There are a wide range of communication protocols, all serv-
ing their own niches. For example, HTTP, SMTP, and IRC.

With the advent of XML there was an increase of protocol
creation, for example XMPP, SOAP and XML-RPC. However
since XML doesn’t have a root vocabulary most of these
different protocols have different naming conventions and
so are not easily inter-operable.

XML is also rather bulky, so in certain areas, such as con-
figuration and data storage, more compact alternative such
as JSON, Lua and YAML have gained. Though like XML, they
lack a root vocabulary.

Pyash does have a root vocabulary so it is fairly straight-
forward to use as a communication protocol. Having the
root vocabulary could encourage people to extend the lan-
guage rather than make entirely new protocols. The binary
encoding of Pyash, which can store various types includ-
ing binary data, is both compact and can be decoded into a
human readable format in a variety of human languages.

In terms of usage of space, Pyash is likely to be more bulky
than any of the early terse ones like HTTP, but will typically
use less space than XML, approaching JSON or YAML —
depending on the length of names used.

The goal of using Pyash for protocols is making it easier
to collect, consume and process large amounts of data. Espe-
cially now that many of us have more storage and processing
power than we know what to do with. For example, may
people have powerful GPU’s in their computers, which most
of the time sit relatively idle.

Since the error reporting was mentioned earlier, here is
an example (Table 6). Though the Pyash versions are longer,
they are more portable, and non-English speaking people
can help debug the program, as the Pyash could be translated
to an approximation of their native language.

Additionally a variety of protocols could be translated into
Pyash, not necessarily so they would be faster, but to make

SLE2017, October 2017, Vancouver, British Columbia, Canada

Error message encoding:570:text_encoding debug text

Pyash English from encoding file at num five seven
zero line in text encoding cereomony the debug text
be emitting.

Pyash kfinhfaspwih hfakhsipzrondo lyinlwoh htetkfin-
sricnwih dyekhtetka mwa7nli

Table 6. Demonstrating how error messages might be con-
veyed more meaningfully using Pyash.

it easier for an Al or AGI to understand and communicate
using them.

4.1.6 Markup Languages

LaTeX, HTML and Markdown are some of the most popular
markup languages on the internet today. Of course they are
mostly for formatting, and do not include a vocabulary for
the content.

However for writing modern documents, it is often im-
portant to have chapters, sections and subsections. Spoken
speech has an (arguable) analog of bold and italics, via the
focus and topic of the sentence — which is already a part
of Pyash grammar. However spoken language generally
doesn’t have long enough monologues for people to even
mark their spoken paragraphs.

The grammar of Pyash could be extended enough to allow
for such mark up. An example would be to make a grammar
word for paragraph, module (section), and frame (chapter).

Pyash as a markup language would be particularly useful
in using Pyash for writing international content, such as
stories, news articles or even legislation.

5 Conclusion and Further Work

A software language based on the fundamentals of human
language that is usable for human communication and com-
puter programming is certainly viable and implementable,
as it has been done.

Translating all or most human languages, or at least con-
trolled variants of them does on the surface appear viable.
Though further research would have to be done to see what
level of conjugation is comfortable for, and how long it would
take for native language speakers to adapt to the controlled
variants.

Translating everything between software languages is un-
fortunately not viable due to the much smaller scope of them,
as they can’t be used for human communication. Though
existing codebase can be used via foreign function interface.

Complete vertical integration of everything that a com-
puter might need to do seems to be viable, though further
work would need to happen to prove it.

This implementation of the language seems to be satisfac-
tory. Language adoption is a major hurdle, which motivates

Logan Zvorygin

this article. Pyash is being used to write an automated pro-
grammer to more quickly write the standard libraries, and
general intelligence operating system to follow.

References

(1]

(10]
(11]
(12]
(13]
(14]
(15]
(16]

(17]

(18]
(19]

[20]

[21]

[22]
(23]

[24]

2004. What is the sonority scale? (2004). http://www-01.sil.org/
linguistics/glossaryoflinguisticterms/WhatlsTheSonorityScale.htm
2006. Frequency List, Project Gutenberg. (2006). https://en.wiktionary.
org/wiki/Wiktionary:Frequency_lists#Project_Gutenberg

2006. WordNet a Lexical Database for English. (2006). https://wordnet.
princeton.edu/wordnet/download/standoff/

2009. The Universals Archive. (2009). https://typo.uni-konstanz.de/
archive/intro/

2010. VOA Special English Word Book. (2010). http://www.
manythings.org/voa/words.htm

2013. The Codelet Execution Model: Fine-Grain Multithreading
for Extreme-Scale Computing. (2013). http://www.capsl.udel.edu/
codelets.shtml

2013. The World Atlas of Language Structures Online. (2013). http:
//wals.info/

2014. Introduction to UNL. (2014). http://www.unlweb.net/wiki/
Introduction_to_UNL

2014. Lojban’s Biggest Problem or Why Still Nobody Speaks
It. (2014). https://groups.google.com/d/msg/lojban/e7cg5vy2EfA/
aJaCO09ERWas)

2016. FrameNet Data. (2016). https://framenet.icsi.berkeley.edu/
fndrupal/framelndex

2016. Google Cloud Translation APL (2016). https://cloud.google.
com/translate/

2016. List of glossing abbreviations. (2016). https://en.wikipedia.org/
wiki/List_of_glossing_abbreviations

2016. The Oxford 3000. (2016). https://www.oxfordlearnersdictionaries.
com/wordlist/english/oxford3000/

2017. Lojban Introductory Brochure. (2017). https://mw.lojban.org/
papri/Lojban_Introductory_Brochure

Culligan B. Browne, C. and J Phillips. 2013. A New Academic Word
List. (2013). http://www.newacademicwordlist.org/

Culligan B. Browne, C. and J Phillips. 2015. New General Service List.
(2015). http://www.newgeneralservicelist.org/

Ben Goertzel. 2013. Lojban++: An Interlingua for Communication
between Humans and AGIs. (2013). https://link.springer.com/chapter/
10.1007/978-3-642-39521-5_3

Richard W.M. Jones. 2009. Jones Forth. (2009). https://github.com/
AlexandreAbreu/jonesforth/blob/master/jonesforth.S

Steven Moran, Daniel McCloy, and Richard Wright. 2014. PHOIBLE
Online. (2014). http://phoible.org/parameters

Arika Okrent. 2010. In the land of invented languages : a celebration
of linguistic creativity, madness, and genius. Spiegel & Grau Trade
Paperbacks, New York.

Heidi Pan and Krste Asanovi¢. 2001. Heads and Tails: A Variable-
length Instruction Format Supporting Parallel Fetch and Decode. In
Proceedings of the 2001 International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (CASES *01). ACM, New
York, NY, USA, 168-175. https://doi.org/10.1145/502217.502244
Martin Schoeberl. 2007. JOP - Java Optimized Processor. (2007).
http://www.jopdesign.com/

Andrii (Logan) Zvorygin. 2008. Rpoku. (2008). https://sourceforge.
net/projects/rpoku/files/rpoku/

Andrii (Logan) Zvorygin. 2009. Rpoku Compiler in Java. (2009).
https://sourceforge.net/projects/rpoku/files/Rpoku%20Compiler%
20in%20)ava/First%20Exhibit/

Andrii (Logan) Zvorygin. 2014. Speakable Programming for Every
Language (in Nasm). (2014). https://sourceforge.net/projects/spel/
files/spel/

Andrii (Logan) Zvorygin. 2017. Expanding domain of algorithms for
GPGPU with code parallelism. (2017). https://gitlab.com/liberit/pyac/
blob/master/documentation/vmOnOpenCL-sigconf.pdf

SLE2017, October 2017, Vancouver, British Columbia, Canada

[27] Andrii (Logan) Zvorygin. 2017. humanity grammar international

program language hjat hgaf nrot hrom pyac. (2017). https://gitlab.
com/liberit/pyac

[28] Andrii (Logan) Zvorygin. 2017. Speakable Programming for Every

Language (in Javascript). (2017). https://sourceforge.net/projects/
spel/files/speljs/

http://www-01.sil.org/linguistics/glossaryoflinguisticterms/WhatIsTheSonorityScale.htm
http://www-01.sil.org/linguistics/glossaryoflinguisticterms/WhatIsTheSonorityScale.htm
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#Project_Gutenberg
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#Project_Gutenberg
https://wordnet.princeton.edu/wordnet/download/standoff/
https://wordnet.princeton.edu/wordnet/download/standoff/
https://typo.uni-konstanz.de/archive/intro/
https://typo.uni-konstanz.de/archive/intro/
http://www.manythings.org/voa/words.htm
http://www.manythings.org/voa/words.htm
http://www.capsl.udel.edu/codelets.shtml
http://www.capsl.udel.edu/codelets.shtml
http://wals.info/
http://wals.info/
http://www.unlweb.net/wiki/Introduction_to_UNL
http://www.unlweb.net/wiki/Introduction_to_UNL
https://groups.google.com/d/msg/lojban/e7cg5vy2EfA/aJaC09ERWasJ
https://groups.google.com/d/msg/lojban/e7cg5vy2EfA/aJaC09ERWasJ
https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://en.wikipedia.org/wiki/List_of_glossing_abbreviations
https://en.wikipedia.org/wiki/List_of_glossing_abbreviations
https://www.oxfordlearnersdictionaries.com/wordlist/english/oxford3000/
https://www.oxfordlearnersdictionaries.com/wordlist/english/oxford3000/
https://mw.lojban.org/papri/Lojban_Introductory_Brochure
https://mw.lojban.org/papri/Lojban_Introductory_Brochure
http://www.newacademicwordlist.org/
http://www.newgeneralservicelist.org/
https://link.springer.com/chapter/10.1007/978-3-642-39521-5_3
https://link.springer.com/chapter/10.1007/978-3-642-39521-5_3
https://github.com/AlexandreAbreu/jonesforth/blob/master/jonesforth.S
https://github.com/AlexandreAbreu/jonesforth/blob/master/jonesforth.S
http://phoible.org/parameters
https://doi.org/10.1145/502217.502244
http://www.jopdesign.com/
https://sourceforge.net/projects/rpoku/files/rpoku/
https://sourceforge.net/projects/rpoku/files/rpoku/
https://sourceforge.net/projects/rpoku/files/Rpoku%20Compiler%20in%20Java/First%20Exhibit/
https://sourceforge.net/projects/rpoku/files/Rpoku%20Compiler%20in%20Java/First%20Exhibit/
https://sourceforge.net/projects/spel/files/spel/
https://sourceforge.net/projects/spel/files/spel/
https://gitlab.com/liberit/pyac/blob/master/documentation/vmOnOpenCL-sigconf.pdf
https://gitlab.com/liberit/pyac/blob/master/documentation/vmOnOpenCL-sigconf.pdf
https://gitlab.com/liberit/pyac
https://gitlab.com/liberit/pyac
https://sourceforge.net/projects/spel/files/speljs/
https://sourceforge.net/projects/spel/files/speljs/

	Abstract
	1 Introduction
	2 Literature Review
	2.1 COBOL
	2.2 Hypertalk
	2.3 Lojban

	3 Method
	3.1 Grammar
	3.2 Vocabulary
	3.3 Morphology
	3.4 Instruction Set Architecture
	3.5 Parser or Encoder

	4 Discussion
	4.1 Vertical Integration

	5 Conclusion and Further Work
	References

