
Pyash: Humanity Fluent Software Language

Logan Streondj

February 13, 2019

Contents

1 Introduction 4
1.1 Problem . 4

1.1.1 Disglossia . 4
1.2 Paradigm . 5

1.2.1 Easy to write bad code . 5
1.2.2 Obsolete Non-Parallel Paradigms . 5

1.3 Inspiration . 5
1.4 Answer . 5

1.4.1 Vocabulary . 5
1.4.2 Grammar . 5
1.4.3 Paradigm . 6

I Core Language 7

2 Phonology 8
2.1 Notes . 8
2.2 Contribution . 8

3 Grammar 10
3.1 Composition . 10
3.2 Grammar Tree . 10
3.3 Noun Classes . 10

3.3.1 grammatical number . 12
3.3.2 noun classes for relative adjustment 12
3.3.3 noun classes by animacy . 13
3.3.4 noun classes regarding reproductive attributes 13

3.4 Tense . 13
3.5 Aspects . 13
3.6 Grammatical Mood . 14
3.7 participles . 16

4 Dictionary 18
4.1 Prosody . 18
4.2 Trochaic Rhythm . 18
4.3 Espeak . 18
4.4 Semantics . 18

4.4.1 Execution Model . 18
4.4.2 Variable Addressing . 18
4.4.3 Declaration addressing . 19

1

4.5 Rank . 20
4.5.1 Asynchronous reading and writing to buffer 20
4.5.2 Relative-Pointers . 21

4.6 Phrase Composition . 21

5 Music 22

II Instruments 24
5.1 Language Instruments . 25

5.1.1 mlathlasxrisge . 25
5.2 ksiktfikge . 27
5.3 Dlutna: Denotation Finder . 28

III Compiler 29

6 Specification 30
6.1 stages of compilation . 30
6.2 Method for implementation . 30
6.3 answer verification . 30
6.4 Memory . 32
6.5 Control Flow . 32
6.6 translate all independentClauses to C . 32

6.6.1 C Name Composition . 32

7 Operation Template 34
7.1 overview . 34

7.1.1 translation . 34
7.1.2 Compiler . 34

8 Pyash Encoding 36
8.1 VLIW's Head Index . 36
8.2 Word Compression . 36

8.2.1 CCVTC or CSVTF . 36
8.2.2 HCVTF . 37
8.2.3 CSVT . 37
8.2.4 CVT . 37

8.3 Quotes . 37
8.4 Extension . 38
8.5 Encoding Tidbit Overview . 38
8.6 Table of Values . 39
8.7 Quote Sort . 39

8.7.1 definitions . 39
8.7.2 Sequence Extension . 41
8.7.3 definitions . 41
8.7.4 Variable Pile . 41
8.7.5 Named Variable Example . 42

8.8 Independent-Clause Code Name . 42

2

IV Machine Intelligence 43

9 Machine Programmer 44
9.1 Oracle Based, or Active Synthesis . 44
9.2 Overview . 45
9.3 input specification . 45

9.3.1 Constraint Specification . 45
9.3.2 Specification example . 45

9.4 Evolutionary programming . 46
9.5 Ceremony produce . 46

9.5.1 produce example . 46

10 Codelet Bytecode Interpreter on GPU 47
10.1 Introduction . 47
10.2 Previous Works . 47
10.3 Operating Template . 48

10.3.1Memory Template . 48
10.3.2Control Flow . 49

10.4 Speculation . 51
10.5 Conclusion and Further Work . 51

3

List of Figures

7.1 Compiler Petri Net . 35

4

List of Tables

3.1 Grammar Tree . 11
3.2 Aspect Tree . 15
3.3 Grammatical Mood Tree . 17

8.1 grammtical-case number system . 42

10.1 Codelet layout, composed of one ushort16, a 16bit phrase, a 32bit phrase, and
64bit phrase are demonstrated. 48

10.2 Index Overview . 48
10.3 Multi ushort16 Codelet layout, includes two conditional clauses, a 16bit phrase,

a 32bit phrase, and 64bit phrase, are demonstrated. 49

5

Chapter 1

Introduction

This is a human speakable programming
language, geared for artificial general
intelligence development.

1.1 Problem
1.1.1 Disglossia
Computer Languages

In order to program all levels of a
modern computer, you need to know many
different programming languages. Assembly/LLVM/SPIRV
at the lowest level, C for system programming,
C++/GTK/QT for graphical interface programming,
Javascript/HTML/CSS/PHP/Perl for web
programming, OpenCL/OpenMP/Pthread for
parallel programming, bash/python/ruby/node
for scripting, Java/C#/Lua for portable
programming, ansible/chef/docker/kubernetes
for administration, a host of different
data storage formats XML/CSV/JSON/YAML/SQL
and different documentation languages
LaTeX/Doxygen/Markdown/TexInfo just to
name a few. That doesn't even include
statistics, audio, image and video processing
languages.

Human Languages

You may have heard the story of Babel,
and the story of Eve and the apple. The
evidence goes back much farther, to
Mitochondrial Eve, in thesecond last
glaciation about 130 thousand years ago.

Mitochondrial Eve is the most successful
mother, the mother all homo-sapiens
share.

Eden was the great rift valley of
Africa.

Mitochondrial Eve lived during times
of famine where most women were likely
too starved to be fertile. Eve was
a clan leader and got enough food to
reproduce, she had many daughters that
became clan leaders.

Human language may have been perfected
by Mitochondrial Eve, she helped her
clan work together more efficiently than
all the others during the population
bottleneck, and thus came out the winner.

To this day we inherit our language
brain centers from the mothers side.

Eve's daughters spread out, some
went west, some, south, some east, some
north.

Those that went South and East preserved
clicks, like the Khoisan people of the
kalahari. Those that went west into
the jungle became the pygmies. Those
that went north eventually became the
farmers, the Bantu and peoples of the
rest of the continents.

The language of Mitochondrial Eve can
be reconstructed based on the common
features of the oldest languages in the
world, as well as our genetic predispositions
to prefer certain forms of grammar.

The most common grammar form, and the
one we are predisposed to is subject-object-verb
(SOV), or head-final with postpositions
and-or suffixes. Similar to Khoe (of the
khoisan), Basque (the first homo-sapiens
in Europe), Australian languages, Turkic
(Central Asian), Uralic (North Eurasian),

6

Tibetan/Burmese (East Asian) and
Proto-Indo-European (That conquered the
world).

1.2 Paradigm

1.2.1 Easy to write bad code
In most, perhaps all contemporary languages
it is easy for beginners to write bad
code.

In assembly it is easy to write tangled
spaghetti code. In C and C++ it is
easy to have memory problems (buffer
overflow, memory leaks, reading unassigned
variables, etc) In Garbage collection
languages it is easy to spend significant
computer resources on allocating and
deallocating memory. In Object Oriented
languages it is easy to write unscalable
code (any which uses objects). In functional
programming languages it is easy to
write memory bound code (non-tail recursive
with lots of allocation and deallocation).

It often takes a lot of expertise
to know the workarounds for the common
programming traps, and even harder to
apply them consistently.

1.2.2 Obsolete Non-Parallel Paradigms
Object Oriented, non-tail recursion
and referentially opaque code are all
obsolete considering that GPUs and parallel
hardware are where processing power is
growing the fastest.

It's easy to write bad code in many
paradigms.

1.3 Inspiration
I was mentally projecting myself into
a robot host body one day and realized
that it would take a superhuman Artificial
intelligence to be proficient in all of
the languages and protocols of a modern
computer and their interactions.

And I came to the realization that
I wanted to be able to have access to
all my knowledge and abilities with one
language.

1.4 Answer
The answer I came up with is the speakable
programming language.

1.4.1 Vocabulary
The root vocabulary was generated by
taking the most frequently used thirty-eight
thousand English words, translating
them into the top thirty to forty human
languages, and then removing words that
were ambiguous and-or homophones.

This left a remainder of about eight
thousand words, which were common to all
languages and orthogonal (not overlapping
in meaning).

This way you can use the root words of
your preferred language to program, and
they will be translated to all the other
languages.

1.4.2 Grammar
Pyash currently uses Eve's grammar: SOV
with postpositions and-or affixes is the
grammar of Pyash the base language of
Pyash.

Transferring it to other forms of
grammar is fairly straight forward. And
has been done with a former iteration of
this language. That does however lead to
a large number of variants.

So for the near future, will simply
have Eve's grammar, and your preferred
vocabulary for root words.

Many contemporary languages lost the
nominative-accusative case distinction,
and have grammar words which are used
ambigiously. For example, the word
``with'' in English is used for comitative-case
and instrumental-case.

So for the actual grammar words,
have decided to go with abbreviated
forms of the translations of glossing
abbreviations. For example _com for
comitative-case and _ins for instrumental
case.

Because of knowledge bias, we'll have
to work together to create documentation
that is easy for beginners to understand.

7

1.4.3 Paradigm
The paradigm conforms to the JPL ten
commandments[JPL10].

• Restrict all code to very simple
control flow constructs – do not use
goto statements, setjmp or longjmp
constructs, and direct or indirect
recursion.

• All loops must have a fixed upper-bound.
It must be trivially possible for
a checking tool to prove statically
that a preset upper-bound on the
number of iterations of a loop
cannot be exceeded. If the loop-bound
cannot be proven statically, the
rule is considered violated.

• Do not use dynamic memory allocation
after initialization.

• No function should be longer than
what can be printed on a single
sheet of paper in a standard reference
format with one line per statement
and one line per declaration. Typically,
this means no more than about 60
lines of code per function.

• The assertion density of the code
should average to a minimum of two
assertions per function. Assertions
are used to check for anomalous
conditions that should never happen
in real-life executions. Assertions
must always be side-effect free
and should be defined as Boolean
tests. When an assertion fails,
an explicit recovery action must
be taken, e.g., by returning an
error condition to the caller of the
function that executes the failing
assertion. Any assertion for which
a static checking tool can prove
that it can never fail or never hold
violates this rule. (I.e., it is
not possible to satisfy the rule by
adding unhelpful `` assert (true) ''
statements.)

• Variables must be declared at the
smallest possible level of scope.

All arrays must have a max-length
variable, and bounds of all new
index points must be checked before
a read or write operation occurs.
If an array is uninitialized, there
must be an initialized-length variable
also, so uninitialized data is not
read accidentally.

• The return value of non-void functions
must be checked by each calling
function, and the validity of parameters
must be checked inside each function.

• The use of the preprocessor must be
limited to the inclusion of header
files and simple macro definitions.

• The use of pointers should be restricted.
Specifically, no more than one
level of dereferencing is allowed.
Pointer dereference operations may
not be hidden in macro definitions
or inside typedef declarations.
Function pointers are not permitted.

• All code must be compiled, from the
first day of development, with all
compiler warnings enabled at the
compiler’s most pedantic setting.
All code must compile with these
setting without any warnings. All
code must be checked daily with at
least one, but preferably more than
one, state-of-the-art static source
code analyzer and should pass the
analyses with zero warnings.

Additionally some OpenCL restrictions.

• no return values.

• input parameters are constants.

• output parameters are pointers.

• functions that don't interact with
environment are referentially transparent.

Those should all be taken care of
automatically, when compiling from Pyash
to OpenCL C. So while other programming
features may be available, it would take
extra effort to enable the program to
use them, and thus to write bad code.

8

Part I

Core Language

9

Chapter 2

Phonology

There are two scripts for the SPEL core-language, one based on URL-compatible ASCII and one
based on IPA. If you are unsure of how to pronounce a letter, then simply copy paste the
IPA letter into wikipedia which will give ample explanation.

Phonemes are based on the most popular distinctive ones on phoibles http://phoible.org/
parameters plus two clicks.

See table 2 for the ASCII, IPA and their description.

2.1 Notes
Alignment the `h' or /ʰ/ is a semi silent h /h/, and is used mostly for alignment purposes.

All words when written in text are either 2 or 4 glyphs long. However some root and
grammar words are three letters, thus they need alignment. For 3 letter roots of the
form CVC (consonant vowel consonant) the h prefixes the word, turing it into hCVC, for
3 letter grammar words of the form CCV, the h is suffixes it, turning it into CCVh.
A simple way to remeber this is that all words must comply with the CCVC or CV form.
So if a three letter word is missing one of those C's then replace it with an `h' to
get proper alignment.

Glottal stops glottal stop `.' is only used for foreign quotes, such as that of proper names,
as they don't necessarily conform to alignment rules

Tones Tones `7' and `2', are mostly for low frequency words

Clicks Clicks `1' or `8' are used for temporary words and variables, especially useful to
make short forms of compound words which are often used in a text or flock of people.
Other options for short-forms are acronyms which must comply with the phonotactic rules
of the language and be grammatically marked as acronyms, and initialisms, which are
foreign quotes as they don't fit the phonotactic rules.

2.2 Contribution
Currently the phonology is pretty much finished, however if there are some compelling arguments
then it may still be modified.

10

http://phoible.org/parameters
http://phoible.org/parameters

ASCII IPA Description English
a ä central open vowel arm
b b voiced bilabial plosive ball
c ʃ unvoiced post-alveolar fricative shout
d d voiced alveolar dental door
e e̞ mid front unrounded vowel enter
f f unvoiced labio dental fricative fire
g g voiced velar plosive great
h ʰ aspiration happy
i i unrounded closed front vowel ski
j ʒ voiced post-alveolar fricative garage
k k unvoiced velar plosive keep
l l lateral approximants love
m m bilabial nasal map
n n alveolar nasal nap
o o̞ mid back rounded vowel robot
p p unvoiced bilabial plosive pan
q ŋ velar nasal English
r r alveolar trill (Scottish) curd
s s unvoiced alveolar fricative snake
t t unvoiced alveolar plosive time
u u rounded closed back vowel blue
v v voiced labio dental fricative voice
w w labio velar approximant water
x x velar fricative (Scottish) loch
y j palatal approximant you
z z voiced alveolar fricative zoom
_ ʔ glottal stop uh-oh
6 ə mid central vowel uh
7 ˦ high tone what?
2 ˨ low tone no!
1 ǀ dental click tsktsk
8 ǁ lateral click winking click

11

Chapter 3

Grammar

3.1 Composition
those marked with asterisk are mandatory for phrase formation.

Phonology

Grammar Words are of the form CV or CCVH where C is consonant, H is /h/ and V is vowel.

Root Words are of the form HCVC or CCVC where C is consonant, H is /h/ and V is vowel.

sentence emotions evidentials mood*

noun phrase (root or pro-form)* suffix case*

verb phrase (root xor copula)* (aspect or tense)*

adjective phrase (root or pro-form)* suffix adjective-marker* case
case needs to be marked if adjective comes after the head noun, or could be confused
as part of a different noun phrase.

adverbial phrase (root or pro-form)* suffix adverb-marker*

3.2 Grammar Tree

3.3 Noun Classes
abstract-gender for thoughts and ideas

animate-gender for more active things,
animacy intensifier

anthropic-gender for anatomically human-like
things

augmentative greater in size or intensity

collective-noun noun taken as a collection
of things, turns mountain into
moutain range, or trees into forest,
or shrub into shrubland

common-gender male or female gender,
hermaphrodites and ambigious gender,
such as bigender, trigender, pangender,etc

diminutive less in size or intensity

dual-number two of the noun

inanimate-gender for less active things,
animacy lowerer

feminine-gender female gender

masculine-gender male gender

12

• noun

– pro-form
∗ person-deixis
∗ time-deixis
∗ space-deixis
∗ interior-deixis
∗ surface-deixis
∗ under-deixis
∗ discourse-deixis
∗ social-deixis
∗ amount-deixis
∗ state-deixis
∗ interrogative
∗ pro-phrase
∗ pro-sentence

– suffixes
∗ proximity

· proximal
· medial
· distal

∗ number
· singular
· dual
· trial
· paucal
· plural
· multal
· collective
· distributive
· inclusive
· exclusive

∗ classifier
· name
· number
· length
· mass
· time
· electric current

· temperature
· amount-of-substance
· luminous-intensity

∗ animacy
∗ volition
∗ gender
∗ specificity
∗ definiteness
∗ quantifier

· assertive
· elective
· universal
· negatory
· alternative

– adjective marker
– adverb marker
– case

• verb

– aspect
– tense

• correlative conjunction

– conjunction (and)
– inclusive disjunction (and-or)
– exclusive disjunction (xor)

• particle

– sentence-final-particle
∗ mood

– sentence-semi-final particle
∗ emotions
∗ evidentials

• subordinator

– genitive
– relativizer

• interjection

Table 3.1: Grammar Tree

13

mineral-gender natural forces, rocks,
bodies of water, etc

neuter-gender non-reproductive entities,
including asexual

paucal-number small amount of something,
8 bit value (0− 255)

number moderate amount of something,
16 bit value between 256 and 65
thousand.

plural-number large amount of something,
32bit value, between 65 thousand and
4 billion.

multal-number giant amount of something,
64bit value, between 4 billion and
18 quintillion.

rational-gender for entities that have
self-selected goal-oriented communication,
such as humans, spiritual entities,
aliens and machine intelligence

singular-number one of the noun

trial-number a few or three of the noun

vegetal-gender for plants and instinct
level animals, including power
plants, solar panels, turbines,
simple and complex machines, including
primarily remote controlled ones.

zoic-gender for higher animals, humans,
and robots that are capable of
making decisions, and learning.

rational-gender for beings that together
with zoic abilities are capable of
establishing missions, and persuing
them.

artistic-gender for beings that together
with rational abilities, share the
wisdom they have acquired.

research-gender for fields of study,
such as mathematics, physics, biology,
and other -ologies, generally pertaining
to exploration and acquisition of
knowledge.

vehicle-gender for vehicles, typically
those that are primarily for the
purpose of transportiation. Includes
space-ships and small asteroids/comets.

locality-gender for places, including
homes, areas, lakes, and countries.
Includes large asteroids, and common
locations of a corporation, for-example
school.

planetary-gender For planemo, or planetary-mass
objects which are rounded by their
own gravity, and major locations
of a corportion, for-example local
school board.

star-gender For stars and central locations
of a corporation, for-example provincial
school board.

galaxy-gender For galaxies and major
divisions of a corporation or virtual
world, for-example department of
education.

universe-gender For universes, corporations
and virtual worlds, for example a
government.

3.3.1 grammatical number
1. singular

2. dual-number

3. trial-number

4. paucal-number

5. plural-number

3.3.2 noun classes for relative
adjustment

• diminutive

• augmentative

• inanimate-gender

• animate-gender

14

3.3.3 noun classes by animacy
this is based on a thirteen chakra system
with animist world view.

0. abstract-gender

1. mineral-gender

2. vegetal-gender

3. zoic-gender

4. rational-gender

5. artistic-gender

6. research-gender

7. vehicle-gender

8. locality-gender

9. planetary-gender

10. star-gender

11. galaxy-gender

12. universe-gender

3.3.4 noun classes regarding
reproductive attributes

• neuter-gender

• male-gender

• female-gender

• common-gender

• anthropic-gender

3.4 Tense
past-tense things that happened

hesternal-tense yesterday

recent-past-tense

remote-past-tense

present-tense now, things that are happening

hodiernal-tense today

future-tense things that will happen

crastinal-tense tommorrow

soon-future-tense

remote-future-tense

3.5 Aspects
atelic-aspect a

cumulative-reference process for
SPEL it is like signal processing,
at any point it is still processing,
perhaps for parallel processes

cessative-aspect for ending process
for SPEL exiting process
for hardware description language
falling edge

completive-aspect completely and thoroughly
finished
for SPEL finished with no errors

continuative-aspect process started but
not active
for SPEL idle processes

delimitative-aspect temporary process

frequentive-aspect repetitive process
for SPEL can be used for servers/daemons

15

gnomic-aspect general truths
for SPEL defining functions

habitual-aspect habitual process
for SPEL can be provided services or
features

inchoative-aspect begining of process
for SPEL loading process
for Hardware Description Layer
signal rising edge

imperfective-aspect for SPEL a process
which is ongoing
any partial process

momentane-aspect for things that happen
suddenly or momentarily, like power
surges and lightning bolts. For
instance a clock-tick could be
momentane and frequentive.

perfective-aspect any whole process
for SPEL a process which has completed

progressive-aspect for active process
for SPEL for active processes

prospective-aspect for processes that
happen after
for SPEL queued processes

retrospective-aspect for processes that
happen before
for SPEL prerequisite processes

telic-aspect quantized process
for processes where any of the
parts are not the whole, only taken
together is it the whole.
for SPEL this is processes that
require sequential components of a
different kind.

3.6 Grammatical Mood
admonitive-mood warning, I warn you that

for SPEL error messages

affirmative-mood agreeingly, I agree
that
for SPEL selection of correct output,
as per reinforcement learning or
genetic algorithms

apprehensive-mood fearfully, I fear that
for SPEL throwing exceptions

assumptive-mood assumingly, I assume
that
for SPEL assert statements

conditional-mood if such and such
for SPEL conditional clauses

commissive-mood I commit to, I promise
that
for SPEL setting calendar events,
and personal virtue goals, also for
unit-tests
for Parliment, to send motion to
comittee

benedictive mood blessings, I wish the
blessing that
for SPEL increasing priority of a
process

deductive-mood deductively, I deduce
that
to mark conclusions through deductive
inference

deliberative-mood shall I?, do you think
that?
for SPEL asking user input

deonitic-mood I should, I ought to, I
plan that
for SPEL pseudo-code

delayed imperative in future do that
for SPEL, scheduled jobs

desiderative-mood I want to, I desire
that
for SPEL near term goal setting

dubitative-mood doubtfully, sarcastically,
I doubt that
for SPEL for inverse assert statements

inductive-mood inductively, I derive
that
to mark conclusions through inductive
inference

inferential-mood for things which are
infered based on premises.

epistemic-mood perhaps, I consider it
possible that

16

Table 3.2: Aspect Tree

• state

– perfective-aspect
∗ momentane-aspect
∗ completive-aspect

– imperfective-aspect
∗ continuous-aspect
∗ progressive-aspect
∗ delimitative-aspect

• occurence

– gnomic-aspect
– habitual-aspect

• part of time

– inchoative-aspect
– cessative-aspect

• relative time

– retrospective-aspect
– prospective-aspect

<h3>Lexical</h3>

• composition

– atelic
– telic
– stative-verb

• causal

– autocausative-verb
– anticausative-verb

17

eventive-mood in the event that
for SPEL event catchers

gnomic-mood generally, In general I
believe that
for SPEL function declaration

hortative should, I urge that

imperative-mood you must, I command that
for SPEL, imperative programming
sentence

imprecative mood curse, curse that
for SPEL decreasing priority of
a process, also for setting up
security measures, such as firewalls,
honey pots and others

indicative-mood indicating the real, I
indicate that
for SPEL variable declaration

interoggative-mood questioningly, I
question that
for SPEL search queries

irrealis-mood unreal sentence, it isn't
real that
for SPEL comments

jussive-mood tell them to, I command
them that.
for SPEL issuing commands to remote
location

necessitative-mood I need that
for SPEL listing of required libraries

optative-mood I wish that
for SPEL long term goal setting

potential-mood possibly, I consider it
possible that
for SPEL try statements

permissive-mood I permit that
for SPEL setting and limiting priviliges,
also for SPARK style contracts
for Parliament set limits of debate

precative-mood I request that
for SPEL making network requests and
pull requests
for Parliment amendments

prohibitive-mood don't, I forbid that
for SPEL, blocking certain things,
or ignoring certain inputs

propositive-mood I suggest that, I propose
that
for Parliment as a main motion
starter in deliberative discussion

realis-mood It is real that

sensory-evidential-mood evidence I've
experienced tells me that
for Parliament or Court, to bring
evidence before the assembly, also
to mark premises in logical arguments.

subjunctive-mood unreal clause

speculative-mood speculatively, I guess
that

volitive-mood desires, wishes or fears

hypothetical-mood For things which aren't
necessarily true, but could easily
be true, from the speakers perspective.
also for spel catch statements

3.7 participles
Participles are when you need to use a verb-form in a noun-phrase, typically as an adjective
modifying a noun.

It follows the same form as a normal verb, except that instead of ending with a mood it
ends with the adjective suffix 'ci' /Si/ or a case-ending if it acts as a noun.

The general form is tense-voice-aspect

18

Table 3.3: Grammatical Mood Tree

• realis

– indicative
– evidential
– energetic

• irrealis-mood

– deontic
∗ commissive

· permissive
· prohibitive

∗ directive
· imperative
· hortative
· precative
· necessitative
· jussive

∗ volitive
· desiderative
· optative
· apprehensive
· benedictive
· imprecative

– epistemic
∗ interrogative
∗ speculative

· assumptive
· dubitative
· potential

∗ inferential
· hypothetical
· inductive
· deductive

– would be
∗ conditional
∗ eventive

active passive
present ra rapyoh or pri7h
past ki kipyoh or tri7h
future bi bipyoh

19

Chapter 4

Dictionary

4.1 Prosody

4.2 Trochaic Rhythm
First syllable strongest, emphasis on odd syllables, grammar words always unemphasized.

http://wals.info/chapter/17

4.3 Espeak
Espeak unfortunately does not have trochaic rhythm support at this time (Feb 2017)

4.4 Semantics
If a sentence has a dative case, then it will return the whole sentence in the consequence
reflector, otherwise it will return what would have gone into the dative case as the result.

4.4.1 Execution Model
knowledge is what is known in addition to builtins, input is a request or action, that can
be fulfilled with what is known and builtins.

Ankh based execution model:
Knowledge is the base of the Ankh. The short-term memory is in the center or Aten. The

wings are the interpreter and evolver. The head is any predictive algorithms.
The Aten stores the current program state. It is a small piece of ring memory that fits

in the L1 cache. Most recent variable updates go there. Have to make extra effort to commit
to long-term memory or knowledge which is outside the cache.

Wheras knowledge is for more long-term information, primarily functions, and immutable
datasets.

4.4.2 Variable Addressing
To address a variable can say the name of the variable and ask for what is in it. for-example
``prifgina hwatka ri'' or ``variable -nom -acc what -acc -int'' or ``named variable is what?''.
This will look backwards from current place in short term memory, checking if nominative
case matches the named variable, then will give the result of the nominative clause.

20

http://wals.info/chapter/17

If it is not found in the short-term memory, then it will look into through the knowledge,
possibly through an index stored in the knowledge for large files.

Atomic Variable Updates

for atomic variable updates, the old variable location is only deleted after the new one
is written. So if it quits in mid-state then there will be two declarations. To make sure
the declaration is valid can write the declaration index last, and erase it first --- when
not doing parallel read/write.

4.4.3 Declaration addressing
function statements can be loaded with unique variables into the code aten, so that the result
of a function call will assign a unique variable, when that variable has been resolved then
execution can continue.

that way can keep up with the weird asynchronous processors all processing statements
in parallel.

each bit of local memory can have it's own local Aten, where it processes pure functions,
and just commits to the global memory the variable results when it gets them.

Thus the worker that puts a declaration onto the code Aten must rename the variables to
something unique, to minimize risk of collision with existing variables.

Can deal with multiple threads in the same cache space by having different topic phrases
for them, or different process names.

the hardest part of that is probably coming up with unique names in an asychronous fashion...
though maybe if they various workers are fed some part of a pseudo-random chain, can have
reasonble assurances. can actually do concurrency without context switching, by simply having
a different topic phrase for each concurrent process. so they will be processed independently
of each other

variable code reuse generalization

in the interest of code-reuse and generalization, the program that does varible interpreting,
for instance deontic mood, can resolve the values of the variables before getting the code-name.
the destination variable can be put into the dative-case. for instance if there is no dative-case,
then the accusative-variable would upgraded to dative-case.

basically this transformation process would generate a new sentence where all the inputs
are resolved values, and only the output is a variable name. it then outputs the output
variable declaration with it's new value.

SSA

2018-02-22 15:05:13 htafdwes also, my current architecture actually does add a declaration
of a variable for every time the variable is updated, and adds it to the top of the cache,
then removes the old declaration, in order to perform an atomic update. that's the only
way I can see of doing asynchronous updates when you have multiple processors processing
the same program. though yeah, I'm still wondering about the best way of garbage collecting
old variables that won't be needed later, currently I'm thinking of just moving them farther
out of the cache, but for very large programs and SSA that would be a lot of memory bloat.
can do what you guys were saying about the shared pointers earlier. like can have a count
of how many reference a variable in the benefactive-case, and when it drops to zero, then
can remove it. in SSA mode, the benefactive-case would grow while the value is unknown,
and shrink after the value is known.

21

2018-02-22 15:20:11 jrslepak hold on, why are garbage collection and SSA interacting at
all?

2018-02-22 15:24:05 htafdwes uh, well I haven't completely figured out SSA, but basically
when a worker adds a function to the code-queue, will have to create unique variables and
interoperate with the calling program. so the caller will wait on the result based on one
or more variables that will result from the call.

htafdwes the "garbage collection" would be something that a worker does, if they notice
that they decrement the benefactive case of a variable to zero upon reading it.

Streams and Promises

To enable streams and promises, or variables that take a while to complete assembly, can
use keywords like processing and finally to indicate whether a variable is currently being
created or if it has completed in it's creation.

If the variable is being created in parallel though, then it would be in an inconssitent
state like a bittorrent, the ending and some middle parts may finish before the begining.

There can also be a count of how many variables are expected, and can decrement based
on that, so when it reaches zero the worker can update the state to finally.

Also for streams that have a certain buffer size, can have a circular buffer, with an
indicator of the current location, maybe using locative case.

For flow-based-programming can have one or more functions listed in the vocative case,
that will be activated to process new stream input. also good for "push" notifications.

4.5 Rank
The rank or priority can be designated, possibly as part of the topic case, using prefix
to designate the priority.

normal priority things would have a certain amount of space between executable lines,
that way if a high priority interrupt occurs, it can fill in the blanks, and thus have fewer
spaces between its commands.

highest priority would have no spaces in between commands, and as it gets lower there
would be more space between commands.

if have a global settings of the various rank process which are available can allocate
each appropriately.

Also when a processor/worker stumbles upon a high-priority process, then it gets sensitized
for the high-priority, and it will sniff around more to see if there might be high priority
commands hidden amongst lower priority commands after it returns froma high priority command,
if not, it will just continue with the next highest priority that it sniffs out.

4.5.1 Asynchronous reading and writing to buffer
all reads and writes happen via atomic-swap. so when a worker is reading a line then it
swaps the index with 0xFFFF (positive-infinity) while it reads the line.

for the normal case of a htin fits within the 15 bytes, then while writing the worker
can put positive-infinity as the index, updating that value last.

Though for those that have several to write. Can write a uint32t to the 0th place of the
form 0xFFFE (negative-infinity) followed by number of arrays that are required, it would
also be updated last. Then it would fill the following initial ones with positive-infinity
unless it doesn't have enough room, in which case would have to unset the ones it did back
to 0 and search for the next available space.

this way any workers that come across the allocation mark will skip ahead beyond it for
reading or writing, and minimize risk of collisions.

22

An additional help would be to have a circular buffer increment. which can be used for
those writing to the buffer, it would be a value that is read, and if it is before where
the worker has written, then the worker will swap it with just after it has written. This
may ease the case for workers looking for free space.

Once a variable is updated, or runs out of callers, then it is erased by the last worker
that accesses it. similarly once a piece of code is successfully evaluated it is erased
by the worker that successfully evaluated it. To erase it, all that has to happen is the
index is converted to 0. Thus algorithms should look for the last point of the sentence
based on the index, rather than based on the last physical location, which could be misleading
with garbage data.

4.5.2 Relative-Pointers
yeah, I think I can do a relative-pointer -type name -case style, then either the initial
worker that loaded the code would put in the relative pointer, or the first worker that attempts
to evaluate it. main issue is that relative pointers aren't generally human readable. but
if I keep the name then it would be. would get replaced by value upon assignment anyways.

4.6 Phrase Composition
verb create

phrase create
tense retrieve

23

Chapter 5

Music

So I've been interested in whistling and talking drum languages like Silbo and Yoruba.
As you may know Pyash has a tone system, however I've specifically made it so that the

most common words don't need tone in order to be expressed.
I'm wondering if I should change it to be all tonal instead, so that can be used like

a talking drum language of Yoruba, which has the same number of tones as Pyash (3).
They use 8 base-3 whistles to represent each word. 9 base-3 whistles would be enough to

represent all possible Pyash words, if enumerated, however that would require a dictionary.
though if use a 10 base 3 system then should be enough for spelling out words.

33 initial consonants (have 22 consonants, and 3 word types), 32 second consonants (have
8 second consonats), 32 vowels (have 6 vowels), 31 tones, 32 final consonants (have 8 finals),
which is (3 + 2 + 2 + 1 + 2 = 10).

Though may be able to do a contour system as used in Silbo, to represent consonants. dono
though, that compositional trinary thing seems pretty easy.

can actually make it 4 contour tones, a 3 tone contour, 2 tone contour, 3 tone contour,
2 tone contour.

to help with parsing, the least common 4 consonants will be assigned the outgoing middle
tone for the initial tone contour, since the majority of vowels end with a middle tone contour.

that way can make Pyash music, that humans and computers can make meaningful sense of.
each word would be a diamond, with a focal note that is the medium tone ans they will dance
around it within an octave range. the next word can have a different middle tone.

also one of the advantages of whistling languages is that humans can use them for long
distance communication, such as 5 km, using whistles or drums.. and robots can use them
underwater for long distance also.

x k g t d p b f v q 1 8 n m c j s z r w l y

24

Number Tone Initial Second Vowel Tone Final

0 000 ˨˨˨ ˨˨ ˨ m /m/ h /h/ u /u/ 2 /˨/ x /x/
1 100 ˧˨˨ ˧ ˧ k /k/ x /x/ o /o�/ MT /˧/ k /k/
2 200 ˦˨˨ ˦ ˦ y /j/ f v /f v/ a /ä/ 7 /˦/ g /g/
3 010 ˨˧ ˧ t /t/ c j / / p /p/
4 110 ˧˧ ˧˧ d /d/ s z /s z/ 6 /@ n /n/
5 210 ˦˧ ˦ p /p/ r /r/ 3 /æ/ m /m/
6 020 ˨˦ ˨ b /b/ w /w/ e /e�/ f /f/
7 120 ˧˦ ˧ f /f/ l /l/ 4 /ɨ/ c /c/
8 220 ˦˦ ˦˦ v /v/ y /j/ i /i/ s /s/
9 001 ˨˨ q //
10 101 ˧˨
11 201 ˦˨
12 011 ˨˧˧ 1 //
13 111 ˧˧˧
14 211 ˦˧˧ 8 //
15 021 ˨˦
16 121 ˧˦
17 221 ˦˦ n /n/
18 002 ˨˨ m /m/
19 102 ˧˨ c //
20 202 ˦˨ j //
21 012 ˨˧ s /s/
22 112 ˧˧ z /z/
23 212 ˦˧ r /r/
24 022 ˨˦˦ w /w/
25 122 ˧˦˦ l /l/
26 222 ˦˦˦ y /j/

25

Part II

Instruments

26

5.1 Language Instruments
dlutge denoter returns available denotations for input words.

hlikryange into-translator converts analytic language to Pyash source code.

kfige encoder encodes pyash source code to bytecode.

lwonpromge evolutionary programmer evolves programs from pyash bytecode specification.

vlicge virtual machine interprets pyash bytecode.

ksiktfikge consequence reflecter a REPL, reflects the consequences of various statemnts.

hk6nge bytecode to C compiler compiles pyash bytecode to C source-code.

hlakryange outof-translator converts pyash bytecode to analytic language.

mlathlasxrisge command-line-userinterface a friendly command line environment for linux.

Dlutge helps find appropriate word for input in the Pyash dictionary, it is particularly
useful if you are just learning a pyash variant for the first time.

Hlikryange is what you use when you have decided on all your words and are ready to convert
to Pyash source-code. For analytic input with Pyash grammar it can be streamed. For other
grammar types and conjugated forms it is file to file. Input is .language-code.txt output
is .pyac.txt

Kfinge encodes Pyash source-code into bytecode which is how most other tools process it.
Input is pyac.txt output is .pyac

vlicge interprets Pyash bytecode and returns the output or sideffects, can also output
a program state dump into bytecode that can be translated out for easy debugging.

Ksiktfikge is an interactive line interpreter, encodes the source code, then runs it,
and returns the result. Can operate standalone or with a server/client model.

hk6nge compilers Pyash bytecode into C source-code for portable compilation. Can then
be compiled into Javascript or otherwise.

5.1.1 mlathlasxrisge
mlathlasxrisge or xris (pronounced Hris) for short is a friendly command line interface to
POSIX systems.

Instead of having a bunch of differently named applications for various purposes, it elects
to have sensible defaults for most things.

Opening files

Linux has xdg-open so can simply use that as default for opening files.
The defaults will have to be configurable via the shell, and the keyword for it would

be plin or opening.

Translating files

can use convert (from image magick) to translate images, and avconv to translate audio files,
maybe ffmpeg or mencoder for translating video files.

All of those defaults could be changed,

27

regular expressions

Can use pgrep for regular expressions, or can make up a pyash specific regular expression
format, possibly based on https://simple-regex.com/

navigating directories

Directory hierarchy can be illustrated through the genetive-marker for example root's home's
user's directory

main issue would be translating the LSB to Pyac, so that all of File Hierarchy erarchy
root and root directory of the entire file system hierarchy.

/ taproot zruk

/bin binary bvih

/boot awake hket

/dev body tcic

/etc configure kxik

/etc/opt kxikti

/etc/sgml kxikti

/etc/X11 kxikti

/etc/xml kxikti

/home house hcas

/lib library htek

/lib<qual>

/media multimedia ht6t

/mnt landing trun

/opt alternate kren

/proc mind hmas

/root administration dran

/run running slac

/sbin operating-system binaries ps6tbvih

/srv service swas

/sys operating-system ps6t

/tmp temporary tric

/usr applications pyen

/usr/bin application's binaries pyentibvih

/usr/include application's headers pyentihxe2k

28

/usr/lib application's library pyentihtek

/usr/lib<qual>

/usr/local application's locally pyentinyip

/usr/sbin pyentips6thvih

/usr/share sharing zran

/usr/src open-source hxus

/usr/X11R6 draw hmuk

/var variable prif

/var/cache speed hsot

/var/lib priftihtek

/var/lock locks priftikla7k

/var/log recorder kyi2t

/var/mail priftimailbox jlos

/var/opt priftikren

/var/run priftislac

/var/spool waiting priftityuc

/var/spool/mail priftityuctijlos

/var/tmp priftitric

5.2 ksiktfikge
The line interpreter can be used as a system shell.

When a line-interpreter starts, it tries to connect to a running server, if there is one.
If not then it starts a server and connects to it -- unless it is in a sandbox/standalone
mode. by default it is on the pyac port 59652.

A typical authentication goes:
• S: "hello"

• C: "hello"

• S: "me -nom hostname's user -acc name -rea you -nom what -acc name -inte"

• C: "me -nom hostname's user -acc name -rea"

• S: "you -nom secret -or salt code -ins verification -inte"
the server main thread listens for incoming connections. there is also a processing thread,

which processes code and data.
when there is a new connection, then main splits it off into a thread. the connection

thread adds data and code to the processing buffer, based on availability.
If processing buffer growing faster than being consumed then more threads are added, and-or

GPU is enabled to process it.
Client can handle authentication for a user that is logged into the local machine, by

saving the password or salted hash and using CHAP authentication.
client users/processes could have capabilities list.

29

5.3 Dlutna: Denotation Finder
inner form:

ziprih_stranger_prihzina ziprih_guest_prihziku ziprih_unknown_prihziku ziprih_foreign_prihzika
dlutli

Chat asked:

user stranger

dlutna na "stranger" ka "guest", "unknown", xor "foreign" be denote ?

user foreign

dlutna foreign

user ask

dlutna na "ask" ka "hear", "please", xor "pray" denote ?

user asked

dlutna asked

dlutna na "ask" ka "hear", "please", "pray", xor "asked" may

user yeah

dlutna reform mweh

30

Part III

Compiler

31

Chapter 6

Specification

Pyash simple compile to OpenCL.

6.1 stages of compilation
1. natural language text (perhaps)

2. analytic language text

3. Pyash language text

4. Pyash encoded tiles

5. if is declarative specification then evolve imperative implementation

6. add imperative implementation function to library if not available

7. compile to (OpenCL) C with Pyash names

8. (OpenCL) C with analytic names (perhaps)

6.2 Method for implementation
In theory can use any language for implementation. Though ideally would be a version of
C which is similar to the above, so it could then be recoded in Pyash.

6.3 answer verification
The agree debug library is OpenCL and holy ceremeny (pure function) compatible.

Ideally would have a way of listing many inputs and their corresponding outputs. If this
could be fed to an OpenCL kernel that would be delicious.

The agree debug library can be the ``testing framework'' for Pyash programs. So each agree
statement adds a line to the newspaper, after the program is complete it can list the statements
in the newspaper, saying those are the tests that failed. Additionally could have a list
of the number that have passed.

I'm thinking can save both the line number, and the amount that have passed in the first
line of the newspaper. It can be an actual sentence, with two 16bit spaces for the values.

gzat na hnuc do lweh hnuc do mwah slak fa li
A newspaper until number with number succeeded.

32

Py
as
h

Py
as
h

C
fi
le

kr
at
ta

kr
at
hn
im
na

li
ca
rd
in
al

to
p
ca
rd
in
al

na
me

no
m
re
a

in
t
ma
in

()
{

ca
rd
in
al
na
me
.c

sw
ic
ta

hn
im
na

li
so
ci
al

to
p
na
me

no
m
re
a

vo
id

na
me

()
{

ca
rd
in
al
na
me
.c

hm
as
ta

hn
im
na

li
mi
nd

to
p
na
me

no
m
re
a

in
li
ne

vo
id

na
me

()
;

li
br
ar
yc
ar
di
na
ln
am
e.
h

in
li
ne

vo
id

na
me

()
{

li
br
ar
yc
ar
di
na
ln
am
e.
c

kr
at
hm
as
ta

hn
im
na

li
ca
rd
in
al

mi
nd

to
p
na
me

no
m
re
a

ke
rn
el

vo
id

na
me

()
{

ca
rd
in
al
na
me
.c
l

ht
ip
do
yu

tx
ik
ka

hc
ic
cu

te
n
nu
m
in
s
in
de
xF
in
ge
r
ac
c
do
wn

co
n

if
(i

<
0x
A)

{

zr
un
do
fi

0
nu
m
re
tu
rn

re
tu
rn

0;

fe
fi
na
ll
y

}

hn
im
na

ty
in
do

cy
ah

na
me

no
m
th
re
e
nu
m
co
p

na
me

=
3;

tx
ik
na

zr
on
do

cy
ah

in
de
xF
in
ge
r
no
m
ze
ro

nu
m
co
p

i
=
0;

ht
ip
do
yu

tx
ik
ka

hc
ic
cu

hy
ik
do
yu

pl
os
li
wa

ht
ek
hr
om
li

te
n
nu
m
in
s
in
de
xF
in
ge
r
ac
c
do
wn

co
n
in
de
xF
in
ge
r
ac
c
on
e

nu
m
in
s
pl
us

re
a
an
d
li
br
ar
y
pr
og
ra
m
re
a

fo
r
{;
i
<
0x
A;

++
i}
{

li
br
ar
yp
ro
gr
am

()
;}

33

A newspaper should be at least 16 sentences long, which is one page or 512 bytes, and
less than or equal to 512 sentences, (32 pages), since that is the most that could fit in
L1 memory with other processes.

6.4 Memory
There is no dynamic allocation of memory, only static, until further notice.

This is because historically dynamic allocation of memory has led to many memory leaks
and other problems.

6.5 Control Flow
Inline control flow is supported

Here are some inline loops:

• sequence -ben produce -dat recipe -acc repeatedly -deo

• count -allative-case produce -dat recipe -acc repeatedly -deo

Inline conditionals:

• comparison -conditional truth -counterfactual-conditional -deo

• comparison -conditional truth recipe -counterfactual-conditional false recipe-dep -acc
produce -nom -rea

• produce -nom -clause-tail comparison -conditional truth recipe -counterfactual-conditional
false recipe-dep -acc produce -nom -rea

• comparison -con truth recipe -counterfactual-conditional neo comparison -con neo truth
recipe -dep -acc produce -nom -rea

6.6 translate all independentClauses to C
Any independent-clause can be turned into C.

can be of the form:

sort1-case1-sort2-case2-verb-mood (sort1 name, sort2 name);

6.6.1 C Name Composition
For C, will need to include the types of the names in order to properly call functions, otherwise
would have to have extra searching to locate which function is being refered to.

This will make it a bit like Navajo or Swahili, where the noun class will be mandatory.
So we should have easy grammar words for them,

for names of things:

plu paucal-number 8bit

do number 16bit

pu plural-number 32bit

ml6h multal-number 64bit

34

ml6hhsosve multal-number sixteen vector, vector of 16 64bit values.

fe referrential, pointer

crih letter, char

crihfe letter referrential, char *

It seems I would only need a hash table lookup for operating on the GPU, seems like most
of the other stuff can be done with a few conditionals.

35

Chapter 7

Operation Template

7.1 overview
7.1.1 translation
An English programmer writes English text.

An English encoder encodes the English text to the Pyash medium code.
A Chinese translator decodes the Pyash medium code into Chinese text.
A Chinese programmer writes Chinese text.
A Chinese encoder encodes the Chinese text into the Pyash medium code.

7.1.2 Compiler
A code compiler from the medium code, to a cardinal ``.c'' file, library header file, and
library ``.c'' files, as well as a kernel ``.cl'' file, and library file of intermediate
code.

Clang compiler takes main and library ``.c'' files, and library header files, and produces
an byin binary.

The byin binary operator sets up the constant stack, input data and makes writeable output
data.

The host code starts the virtual machine kernel, and library kernels.

36

Figure 7.1: Compiler Petri Net

glispromglishrom kfin

hkom

nyottw6nhromtw6nprom

kl6n

pren

mlep

krat

htek

clang

byin
hvim

prentsin

prennrek

swutsric

prenhvic

psas

frenhbuc nrup

frenhtet

glisprom English programmer
twynprom Chinese programmer
glishrom English program
tw6nhrom Chinese program
frenhbuc French user
frenhtet French text
nrup input
kfin encoder
hkom code
nyot translator
kl6n compiler
psas produce or output
krat cardinal file (main.c)
mlep template file (lib.h)
htek library file (lib.c)
pren parallel file (kernels.cl)
hvim runtime
prentsin parallel knowledge (parallel data)
prennrek parallel workers
swutsric holy recipes
prenhvic parallel virtual-machine
psas produce (output)

37

Chapter 8

Pyash Encoding

The virtual machine uses variable-length-instruction-word (VLIW), loosely inspired by head
and tails instruction format (HTF). HTF uses VLIW's which are 128 or 256 bits long, however
there can be multiple instructions per major instruction word.

8.1 VLIW's Head Index
The head is really a parse index, to show the phrase boundaries. In TroshLyash each bit
represents a word, each of which is 16bits, when a phrase boundary is met then the bits flip
from 1 to 0 or vice-versa at the phrase boundary word. index takes up the first 16bits of
the VLIW. This would lead to 256bit (32Byte) VLIW's. The real advantage of the indexing
occurs when there either multiple sentences per VLIW, or when there are complex sentences
in the VLIW's. Having the VLIW's broken up into 32Byte chunks, makes it easier to address
function entry points, which can be placed at the beginning of a VLIW. Can fit 16 VLIWS
in a POSIX page, 128 VLIW's in a Linux page, so would only need 1 byte (8bits) for addressing
functions that are within 1 page distance.

8.2 Word Compression
Now for the slightly more interesting issue of packing as many as 5 glyphs into a mere 16
bits. Why this is particularly interesting is that there is an alphabet of 32 glyphs, which
would typically required 5 bits each, and thus 25bits in total. However the 16 bit compression
is mostly possible due to the rather strict phonotactics of TroshLyash, as only certain classes
of letters can occur in any exact place. The encoding supports 4 kinds of words, 2 grammar
word classes and 2 root word classes. Where C is a consonant, T is a tone and V is a vowel,
they are CVT, CCVT, and CVTC, CCVTC respectively.

8.2.1 CCVTC or CSVTF
I'll start with explaining the simplest case of the CCVTC word pattern. To make it easier
to understand the word classes can call is the CSVTF pattern, where S stands for Second consonant,
and F stands for Final Consonant. The first C represents 22 consonants, so there needs to
be at least 5 bits to represent them. Here are the various classes

``C'' :``p'',``t'',``k'',``f'', ``s'',``c'',``x'', ``b'',``d'',``g'',``v'', ``z'',``j'',
``n'',``m'',``q'',``r'', ``l'',``y'',``w'',

``S'' ``f'',``s'',``c'',``y'', ``r'',``w'',``l'',``x'', ``z'',``j'',``v'',

38

http://scale.eecs.berkeley.edu/papers/hat-cases2001.pdf
http://scale.eecs.berkeley.edu/papers/hat-cases2001.pdf

``V'' ``i'',``a'',``e'',``o'',``u'',``6'',

``T'' ``7'',``_'',

``F'' ``p'',``t'',``k'',``f'', ``s'',``c'',``n'',``m''

, (can check the phonology page for pronunciation) C needs 5 bits, S would need 4 bits, however
the phonotactics means that if the initial C is voiced, then the S must be voiced, thus ``c''
would turn into ``j'', ``s'' into ``z'' and ``f'' into ``v'', also none of the ambigiously
voiced phonemes (l, m, n, q, y, w, r) can come before a fricative because they have a higher
sonority, thus must be closer to the vowel. So S only needs 3 bits. V needs 3 bits T needs
2 bits and F needs 3 bits which is a total of 16 bits. 5+3+3+2+3 = 16 However there are
other kinds of words also. we'll see how those work.

8.2.2 HCVTF
So here we have to realize that CVC or CVTC is actually HCVTF due to alignment. So what
we do is make a three bit trigger from the first word, the trigger is 0, which can be three
binary 0's, 0b000 3+5+3+2+3 = 16 H+C+V+T+C this does mean that now 0b1000, 0b10000 and 0b11000
is no longer useable consonant representation, however since there are only 22 consonants,
and only 2 of those are purely for syntax so aren't necessary, so that's okay, simply can
skip the assignment of 8, 16 and 24.

8.2.3 CSVT
This is similar to the above, except we use 0b111 as the trigger, meaning have to also skip
assignment of 15, 23 and 31. 3 + 5 + 3 + 3 + 2 = 16?+C+S+V+T

8.2.4 CVT
For this one can actually simply have a special number, such as 30, which indicates that
the word represents a 2 letter word. 5+5+3+2+1 F +C+V +T +P what is PF P can be
a parity-bit for the phrase, or simply unassigned.

8.3 Quotes
Now with VM encodings, it is also necessary to make reference to binary numbers and things
like that. The nice thing with this encoding is that we can represent several different
things. Currently with the above words, we have 1 number undefined in the initial 5 bits.
29 can be an initial dot or the final one, can call the the quote-denote (QD), depending
on if parser works forwards or backwards. Though for consistency it is best that it is kept
as a suffix (final one), as most other things are suffixes. 5+3+8 = 16 Q+L+B QD has a 3
bit argument of Length. The Length is the number of 16bit fields which are quoted, if the
length is 0, then the B is used as a raw byte of binary. Otherwise the B represents the
encoding of the quoted bytes, mostly so that it is easier to display when debugging. The
type information is external to the quotes themselves, being expressed via the available
TroshLyash words. So in theory it would be possible to have a number that is encoded in
UTF-8, or a string that is encoded as a floating-point-number. Though if the VM interpreter
is smart then it will make sure the encoding is compatible with the type Lyash type, and
throw an error otherwise.

39

http://wyn.bot.nu/spel/src/vocab/gen/phonology.html

8.4 Extension
This encoding already can represent over 17,000 words, which if they were all assigned would
take 15bits, so it is a fairly efficient encoding. However the amount of words can be extended
by increasing number of vowels, as well as tones. And it may even be possible to add an
initial consonant if only one or two of the quote types is necessary. However this extension
isn't likely to be necessary anytime in the near future, because adult vocabulary goes up
to around 17,000 words, which includes a large number of synonyms. For instance the Lyash
core words were generated by combining several different word-lists, which were all meant
to be orthogonal, yet it turns out about half were internationally synonyms, so were cut
down from around eight thousand to around four thousand words. It will be possible to flesh
out the vocabulary with compound words and more technical words later on. Also it might
make sense to supplant or remove some words like proper-names of countries.

8.5 Encoding Tidbit Overview
0 2 4 6 8 10 12 14 16

C S V T F

SRD C V T F

LGD C S V T

SGD C V T P
QD QS

Legend C Initial Consonant
S Secondary Consonant
V Vowel
T Tone
F Final Consonant
SRD Short Root Denote
LGD Long Grammar Denote
SGD Short Grammar Denote
P (optional) Phrase Parity Check tidbit
QD Quote Denote
QS Quote Sort 8.7

40

8.6 Table of Values
C S V T F
width 5 3 3 2 3

0 SRD y /j/ i /i/ E m /m/
1 m /m/ w /w/ a /ä/ MT /Ă£// k /k/
2 k /k/ s z /s z/ u /u/ 7 /Ă

£/ p /p/
3 y /j/ l /l/ e /e�/ _ /Ă£/ n /n/
4 p /p/ f v /f v/ o /o�/ s /s/
5 w /w/ c j /S Z/ 6 /@/ t /t/
6 n /n/ r /r/ 4 /1/ (U) f /f/
7 LGD x /x G/ 3 /æ/ (U) c /S/
8 SRO
9 s /s/
10 t /t/
11 l /l/
12 f /f/
13 c /S/
14 r /r/
15 LGO
16 SRO
17 b /b/
18 g /g/
19 d /d/
20 z /z/
21 j /Z/
22 v /v/
23 LGO
24 SRO
25 q /N/
26 x /G/
27 1 /|/
28 8 /{/
29 QD
30 SGD
31 LGO

blank means out of bounds
E Error signal
U unused
MT middle tone, no marking
QD quote denote
SGD short grammar word denote
SRD short root word denote
LGD long grammar word denote
SRO short root word denote overflow
LGO long grammar word denote overflow

8.7 Quote Sort
0 5 6 8 11 13 15

QS

QD NL P S VT ST SD

8.7.1 definitions
QS quote sort

QD quote denote

R referential

41

P pointed

S sequence

VT vector thick

ST scalar thick

SD sort denote

16 tidbit

5 tidbit 1 tidbit 1 tidbit 1tidbit 3 tidbit 2 tidbit 3 tidbit

QD referential region sequence vector scalar thick sort denote

definitions
0 literal literal literal 1 1 byte, _paucal_number letter (s)
1 name pointed sequence 2 2 byte, _number word (s)
2 4 4 byte, _plural_number short-term (register)
3 8 8 byte, _multal_number binary data
4 16 unsigned integer
5 U signed integer
6 U floating point
7 3 function

The quote denote is 5 bits long, leaving 11 bits. the next 2 bits is used to indicate bit
thickness of quote scalar (s), the following 3 bits is used to indicate the magnitude of
the vector (s), 1 bit for name or literal

letter l _letter

word word _word

phrase word _acc _phrase

sentence word _acc _rea _independent_clause

text

function

datastructure

named data type

unsigned integer one two three _number (291)

signed integer one two three _negatory_quantifier _num (-291)

floating_point_number two four _floating_point_num ten _bas one _neg _exponential _num (2.4)

fixed_point_number two _flo one _num (2.1)

rational one _rational three _num (1/3)

decimal number ten _bas one one _num (11)

hexadecimal number sixteen _bas eleven _num (11)

vector world _word _and _voc _word two sixteen word _vector (vector of 16 unsigned shorts
each short containing a word, intialized to repeating sequence of ``hello _vocative_case'')

In the case of a referential, or variable name, the name can be (up to) four words long,
that way it fits in a 64bit area --- similar to a 64bit address.

42

8.7.2 Sequence Extension
0 5 6 8 11 13 15

D LT U FL

8.7.3 definitions
D number of sequence dimensions

LT sequence length thickness (same principle as scalar thick)

U unassigned

FL first dimension length, used only if scalar thickness is one byte.

If the sequence bit is flipped, then the byte following the quote short, has 4 bits for
the number of dimensions, and 2 bits for the length of the scalar representing the length
of each dimension.

For compression, if the length thickness is one byte then the second byte of the first
short is used for the length.

Otherwise it is followed by the lengths of each array aligned by the length thickness.
For example if it was a three dimensional array where each dimension was under the length

designated by a ushort,
then it would be quote-denote-short, sequence-short, first-demsnion-length-short, second-dimensions-length-short,

third-dimensions-length short, first dimension values, second dimension values, third dimension
values.

One of the potential issues with storing them in the program, is that it would take a
lot of space and would be more difficult to traverse large arrays.

So it may make sense to make the variable in a large variable pile area, and then simply
have the pointer to it. So then it would be first-dimension-pointer, second-dimension-pointer,
third-dimension-pointer. Which is more similar to the C implementation anyways.

8.7.4 Variable Pile
The variable pile is a statically allocated area in the code. All pointers in the code are
relative to the local variable pile, effectively making it a sandbox. Attempts to read or
write to pointer locations outside the local variable pile will return 0, or errors if possible.

Each recipe (function) has it's own variable pile for locally used variables.
The variable pile is primarily for storing variables that don't fit in a sentence. So

any variable whose phrase wont fit in a standard short vector. Assuming 1 short for the
quote, one for the index and one for the phrase, that leaves 13 for the value, or 12 if it
is a sequence.

Also variables that are defined in a sentence should be inserted without breaking across
a vector boundary, so if the phrase would break, then it should get it's own vector. This
simplifies access to the phrase and variable contents. Breaks would only be acceptable for
variables that are pointed to, so the pointers could span several vectors.

The variable pile is declared in terms of length of vectors of 16 shorts, and pointer
locations point to the start of these vectors.

After a recipe slogan that contains a variable pile, is the variable pile slogan.

• one zero _num _allative_case pile _rea

• hyik zron do lweh mwak li

43

0 source 1 way 2 destinatione 3 location
0 base nominative-case instrumental-case dative-case accusative-case
1 space-context (x) ablative-case prosecutive-case allative-case locative-case
2 genitive-case partitive-case possessed-case associative-case
3 discourse-context initiative-case topic-case terminative-case vocative-case
4 social-context causal-case evidential-case benefactive-case comitative-case
5 surface-context (y) delative-case vialis-case superlative-case superessive-case
6 interior-context (z) elative-case perlative-case illative-case inessive-case
7 time-context (t) initial-time during-time final-time temporal-case

Table 8.1: grammtical-case number system

Then code can be read by starting afterwards.
The

8.7.5 Named Variable Example

8.8 Independent-Clause Code Name
Decided to make the independent-clause code name actually a universal hash, based on the
sorts, cases, aspects and mood of the sentence. It's easier that way.

The grammatical cases can have a table to make it easy to identify them.

• literal literal literal 1234

• literal pointed literal address 1234

• literal literal sequence 5 ``hello''

• literal pointed sequence 5 address 1234

• name * * name

44

Part IV

Machine Intelligence

45

Chapter 9

Machine Programmer

recipe is a function in computer programming jargon.

holy recipe is a pure functionin computer programming jargon.

9.1 Oracle Based, or Active Synthesis
The interactive version of evolutionary programming is where a user starts a conversaion
with the machine programmer.

First you would give a brief description about the purpose of this function, for documentation,
and helping yourself narrow it down a little. Then you would make the function declaration
with the input and output types, perhaps with some contractual constraints on the range of
valid inputs and outputs.

At this point the machine programmer can check it's inventory of known programs to see
if there are any matching programs, that have the same input/outputs, and similar names and-or
description. If it finds a small amount of them, can ask if you'd like to use one of them
as a basis.

After that user can give one or more input and output example and-or a logical description
of what the output should be relative to the input. Can also offer some suggestions for
which functions may be helpful in accomplishing the task.

At which point the machine programmer will start evolving functions that meet the specification
and examples. If it is taking more than a few seconds user can start writing the program
as they think it should be. the functions they thought would be necessary would be in comments,
they can remove or add to them as necessary or uncomment them to include them in the code.

If the user decides that will need to make a new support function in order to achieve
this task, then can save state of this development. and switch over to developing the supporting
function.

If it evolves multiple programs that meet the full specification, but deviate from each
other within the valid range of inputs. Then the machine programmer will ask which of them
is prefered, or if neither then by giving the appropriate output for that particular input.

This process of refinement would occur until either the user is satisfied with the program
or all the evolved programs having matching input and output pairs.

The machine programmer will then select one or more of the evolved programs to the library,
based on what optimization have been set. For example, if size-optimization is enabled,
then the smallest would be added, if speed-optimization is enabled then the fastest would
be added, if fault-tolerance is enabled then two which call a maximally different set of
functions would be added.

Got the idea from a book called "Program Synthesis" (2017), about a 4 hour read: https://www.nowpublishers.com/article/Details/PGL-010

46

9.2 Overview
A human programmer writes a recipe template, recipe suggestions and either provides a working
recipe or sample input and output data.

An encoder encodes the recipe template and recipe suggestions into the intermediate representation
(IR).

If the human programmer provides a working recipe, then the recipe profiler takes the
recipe template IR and working recipe and generates the sample input and output data.

A population generator takes the recipe suggestions IR and input from /dev/random to create
the population IR.

The population compiler converts the population IR into kernel or ``.cl'' files, one for
each.

The population tester loads each population kernel, and streams the sample inputs through
them, checking outputs for correctness, and produces the population fitness which includes
fitness of all individuals.

The champion selector takes the fitness ratings, and the population IR, and outputs the
champions.

The population mutator and recombiner takes the champions and recipe suggestions, then
generates a new population IR.

An output generator takes the champions and outputs the best ones to a file.

9.3 input specification
The input specification consists of:

• the slogan of the recipe,

• description of the recipe,

• specification of the recipe,

9.3.1 Constraint Specification
The one implemented so far is one of the simplest, A form of constraint programing, commonly
used in training contemporary AI.

• the training sequence

• a list of recipes to work with.

9.3.2 Specification example
specification -top recipe slogan -acc begin -rea
training sequence -top begin -rea
-quoted letter.A.letter -quoted -acc input -con
-quoted letter.a.letter -quoted -acc produce -rea
zero -num -acc input -con
zero -num -acc produce -rea
-fin
recipe sequence -top begin -rea
plus -rea
subtract -rea
-fin

47

regulation sequence -top begin -rea
-quoted letter.A.letter -quoted -abl down -con
input -nom produce -acc copula -rea
-fin

9.4 Evolutionary programming
multiple forms of evolution and optmial recipe discovery are used:

• random mutation (asexual reproduction)

• program inversion with backpropogation

• crossover (sexual reproduction)

• speciation

• neuro evolution

• specification generated tests

• adverserial coevolution

• neural networks

A computer program is similar to a recurrent neural net.

9.5 Ceremony produce
The produce of the evolutionary process contains the following items:

• recipe slogan

• best tests generated if any

• health achieved and recipe metrics

• unique identifier based on universal hash of recipe definition.

• required imports

• recipe definition including declared internal variables.

The recipe produce is a named recipe, appended to the file that has the same verb. If
no such file exists then it is created.

This way various over-ride recipes will all be in the same file.
Automatic importing can happen by getting a list of all the verbs in the file and importing

them. Though that could have a lot of problems, if there are name collisions or there are
different providers of recipes.

9.5.1 produce example
holy -top letter tiny -nom tiny letter -num -dat letter -num -acc begin -dec

metadata -top begin -rea
-fin
program recipe -deo
-fin

48

Chapter 10

Codelet Bytecode Interpreter on GPU

10.1 Introduction
The plan is to make a next generation programming language for programming AGI. Constraints
include using human grammar (linguistic universals), being compatible with genetic programming
and maximize GPU usage, which is some of the cheapest and most underutilized processing power
we have available.

In this paper only focusing on the maximizing GPU usage via the virtual machine which
can run the intermediary representation. The intermediary code can also be compiled to C
(host code), and OpenCL C (kernels), particularly for more traditional data-parallel applications.

But for the many processes which are not data-parallel, and instead have long computations
such as compiling LATEX files, those can be run through a virtual machine sitting implemented
as an OpenCL kernel.

In fact the programming language like functional programming languages, encourages to
keep all the input and output in the main function or monad, wheras the ones which are called
are all referentially transparent.

This way can load-balance an application over as many cores as are available, including
GPUs.

10.2 Previous Works
There are many works talking about getting OpenCL working inside a virtual machine, such
as KVM[SPE:SPE2166][Gupta:2009:GGV:1519138.1519141][ratering2011accelerating], but that is
completely different from having a VM running ontop of OpenCL.

One that sounds similar is ``OpenCL for Interpreter Implementation''[OpenCLInterpret]
Though it compiles virtual machine bytecode to OpenCL kernels on CPU, so all it really shows
is that compiled code runs faster on CPU than interpreted code on CPU.

Another similar one is ``Parallel Programming in Actor-Based Applications via OpenCL''[Harvey:2015:PPA:2814576.2814732],
which talks about implementing actors while using OpenCL. Though actors are quite different
from bytecode interpreters. And to use this would require translating code to an actor model,
which may be difficult and not practical for many applications.

Instead I looked at highly parallel instruction set architectures, in particular the architecture
used by the intermediary language is partially inspired by VLIW heads-or-tails architecture[Pan:2001:HTV:502217.502244]

49

0 1 2 3 4 8 12 15

I Q C P Q C C P Q C C C C P V M

Table 10.1: Codelet layout, composed of one ushort16, a 16bit phrase, a 32bit phrase,
and 64bit phrase are demonstrated.
I Index
Q Quote denote
C Content or quoted value, number of

ushorts it is composed of varies
depending on bit length of value

P Phrase end word or grammatical-case
V Verb or command that operates on the

phrases
M Mood word, or grammatical mood (end of

sentence)
U Unassigned words after end of sentence

0 1 4 8 12 15

c p p p p p p p p p p p p p p p

1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

Table 10.2: Index Overview
c Completion bit indicator, if equals 0

then ushort16 is only part of codelet
p Phrase or mood bit indicator, if is

equal to completion bit, then a phrase
word or mood word is here.

10.3 Operating Template
A codelet is a self-contained code module, the linguistic parallel is an independent clause
familiarly known as a sentence.

Each codelet or independent-clause has several phrases for input and output, which are
indexed by it.

The bytecodes or words that make up the phrases10.1 are all equal width.
In the Pyash implementation the codelets are each a ushort16 vector. If that is not enough

to contain for instance a double16 constant, then the index (contained in the first ushort)
indicates that it is not the final ushort16 (see table-10.1)

Each interpreting worker reads one of the ushort16s in the code array, if index starts
with a partial then it skips to the next global id plus work group size short16. Though
before it does, at the end of each evaluation all the workers synchronize to avoid race conditions.

If it is marked as final, it checks preceding indexes to get any extra short16's that
make up the codelet, then evaluates it.

10.3.1 Memory Template
The program code is loaded into constant memory. The working memory is in an globally indexed
local memory heap, and output is to global memory.

Each variable has a reference number in the referential phrase. The global index indicates
if it has been set, and it's location in the local memory heap. The worker waits until all

50

0 1 2 3 4 8 12 15

I Q C P Q C P V M Q C P Q C P V

I M Q C P Q C C P Q C C P V M U

Table 10.3: Multi ushort16 Codelet layout, includes two conditional clauses, a 16bit
phrase, a 32bit phrase, and 64bit phrase, are demonstrated.
I Index
Q Quote denote
C Content or quoted value, number of

ushorts it is composed of varies
depending on bit length of value

P Phrase end word or grammatical-case
V Verb or command that operates on the

phrases
M Mood word, or grammatical mood (end of

clause)
U Unassigned words after end of sentence

inputs are set before evaluating the codelet.

10.3.2 Control Flow
Control flow is managed through variables checked by codelet conditionals.

For example a comparison codelet sets an output variable, all the codelets whose execution
requires the knowledge of that comparisons value check that it is set and that it passes
their internal conditional before evaluating their codelet.

result = 1 > 2;
if (result == true) expression1();
if (result == false) expression2();

All workers check to see if the program is still running, to avoid hangs.

if (running == TRUE) result = 1 > 2;
if (running == TRUE && result == TRUE)

expression1();
if (running == TRUE && result == FALSE)

expression2();

See
If there are more layers of conditionals, then worker has to check them all.

if (running == TRUE && result == TRUE)
result2 = 4 > 2;

if (running == TRUE && result == TRUE &&
result2 == TRUE)

expression3();

Can see an example of the layouf of a codelet that has multiple conditionals in figure 10.3

51

Variables

Each variable has to have a reference, along with it's value, and whether or not it has been
set. For this there is a variable index, much like a hash-table. Each entry has:

• reference number

• fulfillment status (0 unset, 1 set)

• variable location

The lines that reference a value also should indicate if they are reading or writing the
value. There should only be one line that writes the value, and the rest should read it.

Reading and writing can be implicit, because generally only the destination-class cases
do any writing.

Line Evaluation

Each worker grabs a line

Program Queue

Instead of having a program counter, which says the current instruction, can instead have
a program queue. This is valuable for function calls since they are outside the main program.
If a worker happens upon a function call, it can add the contents of the function to the
queue, so the next available workers will process it. Thus the program queue is more of
a LIFO stack than a pipe.

However it doesn't have a stack pointer. The main program loads all the lines of a program
in a global memory stack. Each worker also gets their own short stack.

To start work a worker atomic exchanges from the cardinal stack, if all the dependencies
are met it does what it says. If a worker comes across a subroutine, they fill their short-stack
with the lines of that subroutine. The top of a stack can contain an indicator saying that
there are items in the stack.

If dependencies are unmet then can put the line back where it was found, and then check
the tops of worker stacks --- starting with their own --- to see if any are non-empty, if
there is one that is, then it proceeds to attempt the lines therin. If all the worker stacks
are empty, it goes down the cardinal stack to the first non-empty operation.

If a line is successfully done, then it can either be put in a worker history stack for
debugging and reversibility, and then it searches as usual, checking worker stacks and then
cardinal one.

Branches

For parallel execution, any branch that remerges with the rest of the code would have to
be a function call. So that variables wont be set unnecessarily.

Loops

All loops that don't break or return should simply be unrolled.
Otherwise there are two options for implementation,
The prefered option is simply to only have static length for loops, and always unroll

them, having a variable to check if it has been broken.
Of course some for loop lengths are set at runtime for those can have a special looping

variable which each codelet checks to see if it should continue. It can check after the

52

synchronization point to know if it should jump to the next codelet or continue evaluating
this one.

Alternatively it could process everything, and

Jumps

Jumps may be necessary for some pieces of low-probability code. If there is a branch to
a chunk of code, the branching worker can set a jump variable with the location (in constant
memory) and length of the code. Then other workers would jump to evaluating their corresponding
part of that code, or continue on the main code if they don't fit.

10.4 Speculation
It may not lead to significant performance gain, as it is interpreted rather than compiled,
though it does inherently support superscalar execution, out-of-order execution, and speculative
execution simply because all the codelets are executed in parallel, so may be quite fast,
especially if implemented as a core architecure.

10.5 Conclusion and Further Work
This programming language may lead to increased usage of GPU's for a greater diversity of
tasks. As of this writing I only have a basic prototype of the language, though with more
time and effort it can become fully functional.

53

	Introduction
	Problem
	Disglossia

	Paradigm
	Easy to write bad code
	Obsolete Non-Parallel Paradigms

	Inspiration
	Answer
	Vocabulary
	Grammar
	Paradigm

	I Core Language
	Phonology
	Notes
	Contribution

	Grammar
	Composition
	Grammar Tree
	Noun Classes
	grammatical number
	noun classes for relative adjustment
	noun classes by animacy
	noun classes regarding reproductive attributes

	Tense
	Aspects
	Grammatical Mood
	participles

	Dictionary
	Prosody
	Trochaic Rhythm
	Espeak
	Semantics
	Execution Model
	Variable Addressing
	Declaration addressing

	Rank
	Asynchronous reading and writing to buffer
	Relative-Pointers

	Phrase Composition

	Music

	II Instruments
	Language Instruments
	mlathlasxrisge
	ksiktfikge
	Dlutna: Denotation Finder

	III Compiler
	Specification
	stages of compilation
	Method for implementation
	answer verification
	Memory
	Control Flow
	translate all independentClauses to C
	C Name Composition

	Operation Template
	overview
	translation
	Compiler

	Pyash Encoding
	VLIW's Head Index
	Word Compression
	CCVTC or CSVTF
	HCVTF
	CSVT
	CVT

	Quotes
	Extension
	Encoding Tidbit Overview
	Table of Values
	Quote Sort
	definitions
	Sequence Extension
	definitions
	Variable Pile
	Named Variable Example

	Independent-Clause Code Name

	IV Machine Intelligence
	Machine Programmer
	Oracle Based, or Active Synthesis
	Overview
	input specification
	Constraint Specification
	Specification example

	Evolutionary programming
	Ceremony produce
	produce example

	Codelet Bytecode Interpreter on GPU
	Introduction
	Previous Works
	Operating Template
	Memory Template
	Control Flow

	Speculation
	Conclusion and Further Work

